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Abstract

This paper introduces a new method for finding causal relationships in spatiotem-
poral event data with potential applications in conflict research, criminology, and epi-
demiology. The method analyzes how different types of interventions affect subsequent
levels of reactive events. A sliding spatiotemporal window and statistical matching
are used for robust and clean causal inference. Thereby, two well-described empiri-
cal problems in establishing causal relationships in event data analysis are resolved:
the modifiable areal unit problem and selection bias. The paper presents the method
formally and demonstrates its effectiveness in Monte Carlo simulations and an empir-
ical example by showing how instances of civilian assistance to US forces changed in
response to indiscriminate insurgent violence in Iraq.

∗We would like to thank Marco Steenbergen, Skyler Cranmer and Alrik Thiem for valuable feedback on
an earlier version of this paper. Philipp Hunziker and Thomas Chadefaux also provided extremely helpful
advise.
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1 Introduction

The study of political violence has benefited in recent years from a rapid increase in the

availability of conflict event data sets (Raleigh et al. 2010; Sundberg et al. 2010). In these

data, single instances of violence are coded together with their geographic coordinates and

the date they occurred on. Several recent publications have successfully shed light on

some of the micro-dynamics of civil conflict by analyzing such data (for example Raleigh

& Hegre 2009; Hegre et al. 2009; Buhaug 2010; O’Loughlin & Witmer 2011). However,

while progress has been made in relating conflict intensity to geographic conditions, more

complex endogenous mechanisms that drive conflict at the micro-level remain largely elusive

to quantitative analysis, despite their theoretical prominence (e.g. Kalyvas 2006).

To fill this gap, we introduce a novel approach to causal inference in disaggregated event

data that combines two techniques for ensuring robust and clean causal inference: sliding

spatio-temporal windows (Kulldorff 1997; Braithwaite & Johnson 2012) and statistical

matching (Rubin 1973; LaLonde 1986; Iacus et al. 2012). The presented approach clears

the path for answering a whole class of high-profile research questions regarding the causal

effects of specific types of events on future events. To demonstrate this approach and its

capabilities, we show that the experience of indiscriminate insurgent violence in Iraq has

led civilians to collaborate with the US military.

While presented in the context of conflict research, this method could be equally applied

in other quantitative fields of research that rely on georeferenced data on specific events:
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Criminologists might investigate the effects of law enforcement activities on subsequent

levels of crime. Epidemiologists could analyze the spread of infectious disease as a function

of specific types of interaction between individuals.

This paper proceeds as follows: After discussing the existing research and its short-

comings in the next section, we introduce our methodological contribution in detail and

use a series of Monte Carlo simulations to test its capabilities and limitations. After that,

we demonstrate the use of the method in an empirical example by analyzing the effects of

indiscriminate insurgent violence on civilian collaboration with US troops in Iraq.

2 Abilities and limitations of existing approaches

The theoretical prominence of endogenous conflict dynamics (Kalyvas 2006) has motivated

a number of empirical studies in recent years. In order to understand how past conflict

events shape future levels of violence, a rapidly growing number of studies rely on newly

available event data (see: Raleigh et al. 2010; Sundberg et al. 2010; SIGACT 2010; Leetaru

& Schrodt 2013).

In principle, event data reflect changes in the trajectory of conflicts brought about

by specific incidents. Along these lines, research into the causes and effects of violence

against civilians in civil war (Kalyvas 2006; Lyall 2009) and escalation dynamics (Jaeager

& Paserman 2008; Haushofer et al. 2010; Linke et al. 2012) has drawn on conflict event

data. Several studies have used village-level counts of violent events to investigate whether
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indiscriminate incumbent violence has a deterrent or escalating effect on subsequent in-

surgent activity. Especially Lyall (2009) and Kocher et al. (2011) pioneered this type of

analysis with innovative matching designs and villages as units of analysis.

However, in many situations such natural spatial units of analysis are missing. Some

studies have circumvented this problem by relying on artificial units of analysis, such as

grid-cell months, and aggregated event counts and covariates accordingly. While intro-

ducing these artificial units conveniently clears the way for econometric analysis, it also

leads to two problems widely described in the methodological literature. First, if cells of

arbitrary sizes are the units of analysis, the number of available observations directly scales

with the chosen cell size: the smaller the cells, the more observations. Of course, regu-

lar null hypothesis tests crucially depend on the number of available observations. As N

increases, the standard errors tend to decrease and even the smallest empirical signals be-

comes statistically “significant”. A second problem extensively described in the geographic

literature is the “modifiable areal unit problem” (MAUP), i.e. the fact that the selection

of artificial cell sizes drives spatial inference (Openshaw 1984; Cressie 1996; Dark & Bram

2007).

Approaches to overcoming the MAUP have been proposed in the past and also been

applied in conflict research (O’Loughlin & Witmer 2011). A commonly used method called

“SaTScan” (Kulldorff 1997) relies on sliding spatial and temporal windows to reveal clus-

ters of events on different levels of aggregation.1 Applied to epidemiology, SaTScan was

1For another approach to identifying event clusters see Leslie & Kronenfeld (2011).
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originally introduced as a tool for testing whether a certain region faces an elevated per

capita risk of disease. The method provides a fast assessment of whether event clusters

could have been brought about by chance under corresponding distributional assumptions.

To establish a baseline level of clustered events, SaTScan applies a simulation technique:

For each size of the spatiotemporal window under consideration, the software allocates

events randomly in space and time. Repeating this process in multiple iterations gener-

ates a distribution of simulated events under baseline assumptions. Significant empirical

deviations from this baseline can then be identified for different cell sizes. In other words,

comparing the distribution of artificial events to the empirical record yields an estimate of

how likely is it that observed clustering was brought about by chance.

In the epidemiological case of Kulldorff (1997), this baseline is well justified as it as-

sumes a constant per capita rate of instances of non-infectious disease. In conflict settings,

however, finding suitable baselines is usually much more difficult. Instances of insurgent vi-

olence, for example, are likely to result from a host of factors, including geographic exposure

and reaction to previous violence. Randomly allocating events in space and time might not

adequately capture plausible counterfactual scenarios: Instances of violence against civil-

ians, for example, might be simulated to take place in uninhabited areas and a simulated

baseline would not reflect the causal order of events found in the empirical record.

Relaxing the assumption of a uniform spatial distribution of events, Braithwaite &

Johnson (2012) apply a permutation test within the framework of sliding spatiotemporal

windows to the analysis of violent events in Iraq. In this setup, a random baseline is also
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simulated, but not by relocating conflict events in space and time. Instead, events remain

in their original positions but event categories are randomly assigned. By holding constant

the location and timing of events while changing event categories, a baseline scenario can be

established in which event types are independent of one another. Comparing this simulated

baseline to empirical distributions of event categories shows whether or not specific classes

of events tend to occur together, i.e. in clusters that are unlikely to have been brought

about by chance. However, this measure of systematic co-occurrence, as well as SaTScan’s

identification of event clusters, does not establish a clear causal relationship between the

event types.2 We therefore decided to introduce a new framework for inferential analysis

in conflict event data.

In the following section we describe a new method for finding causal relationships in

event data that combines the best of the two most promising techniques reviewed above:

sliding spatio-temporal windows to overcome the MAUP and statistical matching to allow

for clean causal inference.

3 Matched wake analysis

Any attempt to overcome the discussed methodological shortcomings in the analysis of

causal relationships in conflict event data must start with a theoretical understanding of the

data generating process. A first crucial insight is that events come into existence through a

2It should be mentioned, however, that SaTScan permits the simulation of non-uniform baselines which
makes it a very versatile tool for the analysis of spatial event clusters.
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variety of different mechanisms. In conflict research, there is the widely described effect of

exogenous geographic conditions that drive overall levels of violence (McColl 1969; Hegre

et al. 2009; Raleigh & Hegre 2009; O’Loughlin & Witmer 2011). For example, strategic

locations might see higher levels of violence. Ethnic settlement patterns have been linked

to conflict events in Iraq (Weidmann & Salehyan 2013) and in Israel (Bhavnani et al.

2014). For conceptual clarity one can refer to these factors as the a priori exposure of any

location to violence. Furthermore, levels of violence generally vary over time. A negotiated

ceasefire and seasonal cycles may drive the intensity of conflict across a war zone. These

aspects can be referred to as the momentum of a conflict at any given time. Isolating the

effects of exposure and momentum is a crucial prerequisite for cleanly analyzing the third

mechanism driving levels of violence: reaction to specific events, i.e. the causal effect of

specific interventions. Figure 1 illustrates the logic of this empirical strategy.

In this conceptual sketch, three types of conflict events are depicted. The rectangular

symbol in the center of the left cylinder represents an instance of violence assigned to the

“control” category. The triangle in the right cylinder represents a “treatment” event and

the star-shaped symbols represent events in the dependent category, which are possibly

affected by treatment. In general, context information can be obtained with regard to

exposure for both control and treatment events: spatial information such as local elevation

(Gesch et al. 1999), natural land-cover (Hansen et al. 2000), the proximity of strategic

locations such as the nearest international border (Weidmann et al. 2010), and the pre-

dominant ethnic group in the region (Wucherpfennig et al. 2011) can be calculated based
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Figure 1: Illustration of the empirical strategy. Conflict events are divided into two classes
of “treatment” and “control” events. For each event, previous levels of “dependent” events
and their temporal trends and subsequent levels are established in an automated GIS
analysis.

on geocoded data.

Similarly, momentum of violence for all conflict events can be established by counting

the number of previous dependent events. As figure 1 indicates, the lower half of the

cylinder is subdivided into two halves. A trend in the number of dependent events can be

calculated. It is flat in both cases depicted here (one conflict event in each of the first two

quarters of the cylinders). Of course, the quantity of interest in this setting is the number

of subsequent events, i.e. the reaction to instances of treatment and control.

3.1 Sliding window design

In principle, associating observations with static spatial covariates and dynamic counts

of previous and subsequent dependent events would be sufficient to generate a statistical
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sample for subsequent analysis. This setup, however, still does not account for the MAUP

since the size of cylinders in space and time cannot be identified based on theoretical

expectations: Why should events at a distance of 20 kilometers be counted while events

at a distance of 30 kilometers be excluded? It is exactly this type of arbitrary coding that

Openshaw & Taylor (1979) have shown to obscure quantitative inference.3

As pointed out in the previous section, solutions to this problem have been identified

in terms of sliding spatiotemporal windows. In this setup, the entire procedure of counting

previous and subsequent events for every intervention is repeated for multiple sizes of

spatiotemporal cylinders. This helps us to overcome the problem of inference hinging on

arbitrary cell sizes and to distinguish among small- and large-scale effects empirically. For

example, the effect of a treatment event on the level of dependent events might be stronger

in its direct spatial and temporal vicinity and not affect more distant locations. Moreover,

averaging the effects for different window sizes allows us to calculate a bottom-line effect.

3.2 Statistical matching

In the previous step, interventions were associated with counts of previous and subsequent

dependent events for different spatiotemporal windows. Moreover, spatially referenced

data – such as distances to major cities and population numbers in the area – were used

3Of course, applied researchers are not always in the comfortable position to have exact data on the
locations of the events they study. Some data are only available on the level of administrative units
or pre-aggregated into artificial cells. This methodological discussion is no way intended to discredit the
corresponding studies, but merely an attempt to encourage researchers to use the full geographic information
that is available to them.
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to provide context information for each event. However, without explicitly accounting for

confounding factors, causal inference in this setup can still suffer from selection bias. In

line with studies using natural spatial units of analysis (Lyall 2009; Kocher et al. 2011), we

apply statistical matching in order to compare treated and untreated observations under

otherwise comparable conditions.

The general idea behind matching is to approximate as closely as possible experimental

conditions in observational data (Rubin 1973). Matching has become an important tool in

the social scientific toolbox, although its effectiveness has been disputed (LaLonde 1986).

In experimental settings, treatment is applied randomly and its effects are observed in com-

parison to an untreated control group. Exactly this type of randomization that is so critical

for unbiased inference is frequently absent in observational data. To emulate randomiza-

tion, several techniques have been proposed. In the most simple setting, a large quantity

of observations for both treatment and control are available and exact matching can be

applied. In exact matching, only those observations are retained in the treatment group

for which a corresponding observation can be found in the control group with identical

numerical values for all relevant confounding variables. Exact matching entails that these

observations only differ with regard to treatment being applied or not. Clearly, under such

ideal conditions, the treatment effect can be directly estimated through the difference in

means between the groups for the dependent variable (Iacus et al. 2012:1). Unfortunately,

such conditions are hard to find in practice. Usually, the confounding variables between

treatment and control observations are comparable, but not completely identical. Several
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strategies exist to alleviate this problem. One approach is to capture the effect of the con-

founding factors on the probability of treatment assignment in a propensity score model

(Rosenbaum & Rubin 1983). Propensity score matching essentially amounts to predicting

the probability of treatment assignment with a binary dependent variable regression model.

The predicted probabilities of treatment assignment for each observation are used as the

“propensity score” and observations from treatment and control group with similar scores

are used in the subsequent analysis.

There is a practical problem associated with this technique for sliding spatiotemporal

windows. A propensity score model requires as much care in post-estimation analysis as

any other binary dependent variable model. Moreover, since the goal of matching is to

increase balance, i.e. to make the empirical distributions of the covariates more similar,

the balance has to be assessed for each covariate before and after matching. In practice,

researchers have to go back and forth between propensity score model specifications and

assess the improvements in balance. Poorly performing propensity score models can very

well decrease the overall balance and therefore completely defeat the purpose of matching.

Clearly, a more robust and automated technique is needed for MWA: Due to the sliding

window design, matching has to be performed repeatedly for all spatial and temporal

parameter combinations, and manual readjustments after post-estimation analysis are not

an option. A very recent and computationally efficient automated matching technique

alleviates this problem: Coarsened Exact Matching (CEM) (Iacus et al. 2012). In CEM,

substantially identical but numerically slightly different values are collapsed into bins of
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variable sizes for each covariate. Matching is then performed for observations belonging to

the same bins. Finally, a subsequent analysis can be performed for matched observations,

but with the original numerical values. CEM generates well-balanced data sets by choosing

bin sizes for different variables based on their empirical distributions. This method is

much faster and more transparent than its alternatives and we therefore rely on CEM for

automated matching.

3.3 Estimation of causal effects

Several methods exist that are commonly used to estimate the causal effect of the treat-

ment after matching is performed. For example, a Difference-in-Differences design (DD)

(Angrist & Pischke 2009:227-243) has been proposed and used in related empirical studies

(Lyall 2009). To assess the within-subject before and after change, DD performs an OLS

regression on the matched data set to estimate changes in the number of dependent events

brought about by the treatment. The dependent variable in this model is the number of

dependent events after interventions. The number of dependent events before the interven-

tion is also necessarily included in the model. Note that counts were aggregated for each

of the pre- and post-intervention period, solving the problem of serial correlation that DD

designs are otherwise prone to (Bertrand et al. 2004:252). Moreover, the setup accounts

for changing conflict dynamics unrelated to the interventions by matching on the trend

in the dependent variable before interventions. The trend itself is calculated simply by

subdividing the lower half of the spatiotemporal cylinder into two periods (see figure 1).
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The resulting DD specification is then:

npost = β0 + β1npre + β2treatment+ u (1)

In this model, β2 is the estimated average treatment effect of the treated, i.e. the

quantity of interest in the analysis. In the result presentation below, estimates for β2 are

shown for each spatiotemporal window under investigation. We further provide detailed

summary statistics for the matching procedure in terms of the multivariate L1 imbalance

measure and the percentage of common support (Iacus et al. 2012). L1 is a multivariate

distance metric expressing the dissimilarity between the joint distributions of the covariates

in treatment and control groups. To calculate this statistic, the joint distributions are

approximated in fine-grained histograms. Average normalized differences between these

histograms are expressed in the L1 statistic ranging from complete dissimilarity (1) to full

congruence (0). A similarly intuitive measure is common support: It expresses the overlap

between the distributions of matching variables for treatment and control groups in percent

(Iacus et al. 2012). 100% common support refers to a situation where the exact same value

ranges can be found for all matching variables in both groups. A formal description of L1

and common support can be found Iacus et al. (2012).

In summary, a suitable setup for the causal analysis of conflict events has been sketched

out in four steps. Intervention events are associated with geographic context information

and counts of previous and subsequent events. After that, they are matched with regard
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to previous event counts, trends, and geographic variables. Finally, they are analyzed in a

Difference-in-Differences regression design. Figure 2 provides a graphical representation of

this procedure.

1) Mapping 2) Counting

npost}
treatment

} npre

3) Matching

}        {

4) Estimation

}Treatment effect

=

Figure 2: Graphical overview of the MWA procedure: In a first step, observations are
associated with geographic information via nearest neighbor mapping. After that, previous
and subsequent instances of “dependent” events are counted. In step three, observations
are matched with regards to previous events, event trends, and geographic information.
The method of choice in this procedure is coarsened exact matching. Finally in step four,
the treatment effect on the dependent variable is established in a Difference-in-Differences
regression design for the matched sample.
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3.4 Limitations of the approach

While the underlying logic of matching designs is sound and widely used in empirical social

science (see Abadie & Imbens 2006; Herron & Wand 2007; Diprete & Engelhardt 2004),

spatiotemporal data introduce potential pitfalls. Most importantly, the spatiotemporal

cylinders around interventions can overlap partially. If they do, the “Stable Unit Treat-

ment Value Assumption” (SUTVA) inherent to matching is violated. It states that the

treatment effect of any observation should be independent of the assignment of treatment

to other units (Cox 1958). Violating this assumption can lead to biased estimates. Two

MWA scenarios are imaginable in which the SUTVA assumption would be clearly violated.

First, multiple treatment events could overlap. Assuming a positive treatment effect, the

corresponding estimates are likely to be biased upward in this scenario. Second, treatment

and control events could overlap in space and time and thereby “water down” the treat-

ment effect. In this case, the estimate for the treatment effect would be biased downward.

To address this problem, we match on the number of intervention events that precede each

intervention. This remedy and its effectiveness will be discussed in more detail below.

While SUTVA violations may indeed pose a problem to clean causal inference in MWA,

there are ways to mitigate this problem. First, spatiotemporal overlaps are easily identified

in empirical data. As described above, counting previous and subsequent instances of

violence is part of the data preprocessing, and multiple instances of overlapping treatment

and control events can be counted as well. The simplest way to avoid drawing false inference
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is therefore to check the data for overlaps of treatment and control events and select subsets

that are not affected by this problem. For example, a civil war might go through phases of

intense violence (e.g. summer offensives) and calmer periods, and researchers could test the

causal effects of different types of events in the calmer periods to avoid false inference from

overlapping events. However, empirical insights into the conflict dynamics would then, of

course, be exclusively limited to such calmer periods instead of the entire conflict.

Second, if substantial numbers of overlapping cylinders cannot be avoided, data can

still be analyzed using MWA. In this situation, the following problem has to be accounted

for: Interventions of different types prior to the intervention under investigation can affect

subsequent levels of dependent events. As a result, the causal effect attributed to the

intervention would be in fact the product of a specific mix of different interventions (a

double treatment, for example). A simple remedy in this situation is to match on the

numbers of previous treatment and control events. This ensures that the interventions

retained in the post-matching sample have similar histories of treatment and control events.

Another effect of matching on previous interventions is that non-overlapping treatment

and control events have a higher probability of being selected into the post-matching sam-

ple. This is due to the fact that overlapping cylinders tend to differ with regard to the

previous number of treatment and control events because the earlier event will be counted

as a previous event for the later one. This effect leads to a matched data set with fewer

overlapping events. A side effect of this approach is that it decreases overall balance be-

tween the treatment and control groups with regard to exposure, since overlapping events
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yield similar values for the related spatial confounding factors.

A third strategy is to simply remove overlapping observations from the sample. The

obvious problem with this approach is the potential bias arising from non-random deletion

itself. In a benchmark analysis using simulated data, we show that this strategy still

performs better than the baseline method for smaller overlaps, but for larger overlaps

the problems associated with non-random deletion are very noticeable. The strategy also

appears to lead to less robust estimates for overlapping cylinders than matching on the

number of previous treatment and control events. We demonstrate quantitatively in the

next section how these remedies perform.

4 Monte Carlo simulations

In this section, we demonstrate the performance of MWA based on simulated event data.

We rely on artificial data to maximize the transparency of the setup and generate bench-

marks under controlled conditions that include simulated causal effects, but also random

noise that can be expected in any empirical application.

Two scenarios were used for the simulations. First, as a proof-of-principle, a treat-

ment effect was established under ideal circumstances: Cleanly separated “treatment” and

“control” events were analyzed under otherwise comparable conditions. Second, data with

increasingly stronger overlaps were analyzed to illustrate the resulting biases. Remedies

such as deletion of overlapping events and matching on previous intervention events were
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tested.

4.1 Data generating process

In order to emulate some of the empirical complexity of event data, we constructed artificial

samples using three types of events. One type of event represents the “dependent” category

and our quantity of interest was changes in the frequency of these events after interventions.

The other two types are intervention events, which are labeled “treatment” and “control”

in compliance with the matching terminology. The artificial causal effect was modeled

in two steps. Events of the “dependent” category were placed prior to interventions and

exhibited varying trends. Dependent events following interventions were placed in fixed

temporal and spatial distances from the interventions.

The frequency of dependent events increased such that one more dependent event oc-

curred after treatment than before. For events of the “control” category, the number of

dependent events following interventions remained unchanged in comparison to the number

of preceding events. An increase of one event is the smallest possible effect for discrete

event counts and provides a difficult test situation: the larger the effect, the more easily

it is recovered by the the method. Absolute counts and trends in dependent events were

varied to increase the realism of the simulations. The data contained 200 “controls” and

100 “treatments”. This imbalance was intentionally chosen to emulate the complications

of empirical data. We account for this difference by using weighted regressions for the DD

analysis in the simulations and the empirical section.
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For each intervention event, we also assigned two stylized confounding variables which

were simply numerical values drawn from the same random distributions. For the simula-

tion, we ignored the potential effects of confounding factors on the probability of treatment

being applied, since they would be mitigated by the matching if they were present. 4 Ar-

tificial intervention events were distributed over a geographical region of 2 by 2 degrees

around the Equator, which corresponds to an area of roughly 220 km by 220 km. Figure 3

depicts the spatial setup for the simulations. Of course, intervention events were separated

temporally. By varying the simulated time period, the probability of events overlapping

in this simulated setup could be adjusted: the longer the simulated time span, the smaller

the probability of overlaps. By varying the time span under investigation, we could assess

the effects of increasing overlaps on the estimation of the treatment effect.

4.2 Simulation results

To overcome MAUP, MWA establishes event counts and estimates for the treatment ef-

fect for different spatial and temporal cylinder sizes. The corresponding insights can be

communicated graphically as a contour plot:

The lighter the color the larger the estimated treatment effect (β2 in formula 1). The

corresponding standard errors are indicated by shading out some of the estimates: No

shading corresponds to p < 0.05 for the treatment effect in the DD analysis. Dotted lines

indicate p-values between 0.05 and 0.1 and full lines indicate p >0.1. The cells indicating

4For more details on the generation of our test data, please refer to the supplementary information.
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Figure 3: Map of the simulated data distributed over the region within the 1st degree
latitude North and South and the 1st degree longitude East and West, an area that cor-
responds to roughly 220 km by 220 km. This generic spatial setup was used for all Monte
Carlo simulations.

effect size and significance level are arranged in a table where each field corresponds to one

specific combination of spatial and temporal sizes of the cylinders depicted in figure 1 (see

figure 4).

To illustrate the ability of MWA to reveal the spatiotemporal distances at which reac-

tion to intervention occurs, the dependent events after interventions (i.e. reactive events)

were placed at distances of eight days and eight km. Figure 3 shows how the resulting clus-

ters of events are distributed randomly in space. The probability of clusters overlapping

was minimized as they were spread out over a temporal span of 20 years. In this case, clean

causal inference is possible and the method clearly recovers exactly the simulated causal

20



2 4 6 8

2

4

6

10

Spatial window in kilometers

Te
m

p
o
ra

l 
w

in
d

o
w

 i
n

 d
a
y
s

p<0.05

0.05<p<0.1

p>0.1

Significance:

Estimates:

10

8

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: Estimates and significance levels for simulated data. Significance levels are
indicated graphically. No shading corresponds to p<0.05, dotted lines to p<0.1, and full
lines to p>0.1.

effect in the number of dependent events at eight days, eight km (figure 4). Note that

larger spatial and temporal window sizes yield the same results (for example, 10 days and

10 km). This is because for the special case of non-overlapping cylinders larger windows

still only contain the same number of dependent events as the smaller windows. For smaller

spatial and temporal window sizes, the estimates are not significant.

4.3 Robustness of the method

We ran a series of tests to assess the effects of overlapping interventions on the causal

inference and to demonstrate the effectiveness of the proposed remedies. To generate

overlaps, we distributed simulated events in the same simulated space as shown in figure 3
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and with the same reactive pattern as before, but within increasingly shorter time periods

(from 1 year down to 10 days). For each time interval we generated 100 random test data

sets and applied the method for each one.

Biased results as a function of overlapping interventions should make it more difficult

to infer the true treatment effect. In our simulated example, this effect appears at spatial

distances of eight kilometers and temporal distances of eight days from the interventions.

Therefore, we used corresponding cylinder sizes of eight days and eight kilometers to cap-

ture the simulated causal effect. Figure 5 shows the average estimates and confidence

intervals for the estimated causal effect as a function of growing overlaps of the inter-

ventions. The standard matching procedure is compared to a setup where matching is

performed on previous interventions.

In the figure, the overlap of spatiotemporal cylinders is expressed as the percentage of

observations for which at least two treatment events overlap. The “% overlaps” in figure

in 5 indicates the percentage of observations for which at least two treatment events are

in the same cylinder. 5

The true treatment effect in all simulations is 1 and indicated with a dotted line.

Estimates for this true effect vary for the different simulation runs: Mean values are shown

as circles and 95% confidence intervals are shown as whiskers. The asterisk above many

data points indicates that all simulation runs yielded p-values smaller than 0.05.

5Whether SUTVA violations are measured in double treatments, double controls, or treatment and
control overlaps does not strongly affect the results as shown in the supplementary information.
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Figure 5: Average estimates with 95% confidence intervals as a function of the overlaps of
the spatiotemporal cylinders. The graph shows estimates for MWA (top), MWA with non-
random deletion of overlapping observations (middle), and MWA with matching on counts
of previous treatment and control events (bottom). Asterisks indicate that all estimates
for all simulated data sets were significant at the 0.05 level and the dotted line marks the
true effect.

The figure clearly indicates that all three methods produce correct estimates on average

also for larger overlaps, but substantial differences exist when it comes to the reliability of

the different approaches. For the normal MWA procedure, overlaps affecting up to about

20% of the observations still yield consistently significant results. For slightly higher levels

of overlaps, deletions of overlapping observations more reliably produces correct p-values

for the treatment effect, as shown in the middle panel. However, for highly clustered

data, non-random deletion performs worse than standard MWA. The best results for all
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ranges of overlaps can be achieved by matching on counts of previous interventions. This

approach is demonstrated in the lowest panel: For overlaps of up to 28%, all 100 analyses

of simulated data correctly reveal a positive and significant treatment effect. Moreover,

confidence intervals are smallest for this procedure.

This analysis shows that the method robustly identifies the true causal effect for a given

spatiotemporal lag for situations of moderate overlaps (up to 20%). In the cases of stronger

overlaps, matching on the number of previous treatment and control events improves the

accuracy of the estimated treatment effect, in line with our theoretical arguments in section

3.4 but only to a point: Beyond 25-30% overlaps, inference becomes less robust.

In the next section we turn to our analysis of an empirical example and investigate the

effects of insurgent violence on civilian cooperation with the US military in Iraq. Based

on the results of our Monte Carlo simulations we use MWA with additional matching on

previous treatment and control events for our empirical analysis.

5 Empirical case: civilian collaboration in Iraq

This section demonstrates that MWA can provide substantive insights into the turmoil of

civil conflict and the causal effects of specific types of events. The ongoing war in Iraq

was identified as a suitable test case as it lends itself both conceptually and empirically to

testing micro-level hypotheses.

After the 2003 US-led invasion, the country went through several phases of intense
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political violence. Following the initial occupation in 2003, a low-level insurgency developed

and grew in subsequent years. This sequence of macro-events is typical of a wider class of

cases: A government is replaced through outside intervention and subsequent occupation

of the country. The new government faces a problem of legitimacy and is heavily reliant on

outside support. Elements loyal to the former administration start a protracted campaign

to topple the new incumbent.

An additional source of violence in Iraq were sectarian clashes between Sunni and Shia

that intensified after the Al-Askari Mosque bombing in February 2006. In the following

24 months, sectarian violence escalated dramatically. During 2007, 20,000 additional US

troops were deployed in the country to contain the escalating civil war and to strengthen

the Iraqi security apparatus. During the same period, the Sons of Iraq movement began

assisting incumbent forces in fighting foreign insurgents. During 2008 and 2009, violence

against incumbent forces steadily declined, while sectarian tension continued to claim civil-

ian lives.

In 2010, a large number of temporally and spatially referenced conflict events recorded

by the US military were released to the general public through the online platform wikileaks.

org (SIGACT 2010).6 Several inquiries into the conflict dynamics in Afghanistan and Iraq

have been published recently that focus on the spatial and temporal distribution of conflict

6We decided that these illegally distributed data could be used in a responsible manner for basic research,
given that the empirical analysis would not in any way harm or endanger individuals, institutions, or
involved political actors. To ensure this, our analysis only focuses on the events in the statistical aggregate.
Moreover, the matching design entails that no marginal effects are estimated for confounding factors, which
further strengthens the anonymity of the findings. Based on these precautions, the ethics committee of
ETH Zurich reviewed a proposal for this study carefully and then allowed it to proceed.
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events (O’Loughlin et al. 2010), conflict dynamics (Linke et al. 2012), the clustering of

conflict events in space and time (Braithwaite & Johnson 2012), and violence-induced mi-

gration (Weidmann & Salehyan 2013). However, micro-level conflict dynamics and causal

relationships between events remain heavily understudied.

Following a line of argument that predicts increased civilian collaboration with the

strategic adversary in reaction to indiscriminate violence by either side, we assume indis-

criminate insurgent violence to increase civilian collaboration with the US military in Iraq

(see Kalyvas (2006:144), Kocher et al. (2011); Linke et al. (2012); Ellsberg (1970); Mason

& Krane (1989)). More specifically, we assume that civilians are more likely to deny in-

surgents access to explosives in response to indiscriminate violence. But how can such an

expectation be tested empirically?

First, it is important to understand how a substantial fraction of insurgent violence

was applied in Iraq. To compensate for the lack of heavy weaponry, Improvised Explosive

Devices (IEDs) have been used against both military and civilian targets. In many cases,

IEDs are military-grade explosives obtained from unexploded ordnance. These explosives

are combined with improvised trigger mechanisms. Unlike landmines, many IEDs are

attacker activated and can therefore be used both selectively against adversary combatants

or indiscriminately against civilians.

Due to these technical particularities, obtaining unexploded ordnance is a crucial pre-

requisite for generating a constant supply of new IEDs. Confronted with unexploded

ordnance, civilians face a strategic choice: They can either remain passive and thereby
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allow explosives to be obtained by insurgents, or they can turn in explosive remnants of

war. Arguably, civilians will be more inclined to do so if other civilians have been harmed

with IEDs in their spatial and temporal vicinity. We therefore test the following hypothe-

sis: Indiscriminate insurgent violence using IEDs increases civilian handover of unexploded

ordnance to US troops compared to selective insurgent violence using IEDs.

Testing this hypothesis based on MWA requires three event categories to be specified.

First, the dependent variable has to be selected. In this case, instances of civilians turning

in unexploded remnants of war is the dependent variable. The treatment category is IED

Explosions that have led to civilian casualties, while events that have not claimed civilian

lives are used as the control category. Instead of relying on exact casualty counts which

might be difficult to obtain under wartime conditions, we relied on so-called “friendly force

information requirements” that are associated with many SIGACT observations. We used

this information to focus the analysis on events that the reporting unit classified as severe.

5.1 SIGACT data and event categories

The version of SIGACT (Significant Activity) files used for this study cover the time period

from 2004 to 2009 and amount to 391,832 records. However, the data provide different

spatial resolutions for different parts of the country: Events coded in the Baghdad region

are coded with a spatial resolution of approximately 1 km while events for the rest of the

country are only accurate to about 10 km.

We decided to analyze the Baghdad subset of the data in MWA and focused on the
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last two recorded years (2008 and 2009). As mentioned above, the conflict went through

numerous phases that can be roughly divided into an initial insurgency (2003-2006), sec-

tarian civil war and the rise of pro-government militias (2006-2008), and a mixture of all

of these conflicts with reduced intensity since 2008.

Especially the last phase of the war covered by the data (2008 and 2009) is suitable for

testing the proposed hypothesis as events are not as densely clustered as during the most

intense violence in 2006 and 2007. Moreover, collaboration with incumbent forces is more

frequent than during the initial insurgency. In total, 2,484 events were used for testing the

proposed mechanism in the 2008-2009 period for the Baghdad area. The substantive find-

ings generalize well for the rest of the country, as shown in the supplementary information

in a separate analysis.

Civilian collaboration with US forces can be measured directly in the data set. Three

event categories reflect direct civilian assistance in terms of civilians passing on information

or turning in evidence or weapons.7 We used instances of “turn in” (667 events in the

sample) as the dependent type. To distinguish among two types of events that affect

subsequent levels of civilian collaboration, IED explosions that harmed (killed or injured)

at least one civilian were coded as “treatment” (254 incidents), and those that did not

were used as “controls” (177 incidents). Figure 6 shows the geographic locations of events

in the treatment, control, and dependent categories.

7These categories are tagged as “turn in”, “explosive remnants of war/turn in”, and “erw/turn-in” in
the SIGACT data.
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Generally, casualty reports in military data collection might be affected by biases. For

example, soldiers might underreport civilian casualties that they have caused themselves,

or give too optimistic accounts of enemy casualties. When it comes to civilian casualties

caused by insurgents, there are no obvious incentives for misreporting in an internal data

collection. We nevertheless use these data conservatively by focusing on reportedly severe

incidents. This information was obtained from another field in the SIGACT data, the

“friendly force information requirements”. We also used information on casualties conser-

vatively and only checked whether or not civilian were harmed to code “treatment” and

“control” events.

Baghdad
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Mosul

Ramadi

Samarra

Tikrit

Karbala

Najaf

Samawah

Nasiriyah Basrah

Amarah
Diwaniyah
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Hillah

dependent

control

treatment

Baghdad

Figure 6: Map of Iraq and Baghdad showing the location of all events (treatment, control,
and dependent) included in the analyses
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Geographic matching variables were coded for all SIGACT events under investigation.

We obtained geocoded data on approximate population figures for the year 2000 (CIESIN

2005), distances to Baghdad’s “Green Zone”, and stable nighttime light emissions for the

year 2008 as a proxy for infrastructural development (NGDC 2012). The ethnic compo-

sition of the neighborhood under attack could not be established based on existing data

sources. For central Baghdad, Weidmann & Salehyan (2013) have coded time variant

data on ethnic groups, but their data only cover a fraction of the greater Baghdad area

under investigation.8 Summary statistics for the matching variables can be found in the

supplementary information.

The spatial variables were coded through nearest neighbor mapping between SIGACT

observations and the mentioned data sets. Beyond these variables, we also matched on the

pretreatment trend in civilian assistance and previous “treatment” and “control” counts,

which is in line with the previous discussion.

5.2 Empirical results

The results allow a nuanced insight into how violence changes patterns of collaboration at

specific temporal and spatial distances from the intervention. Figure 7 gives an overview of

the central findings. Almost all estimates for all cylinder sizes are positive. As visible in the

center of the plot, significant increases in collaboration occurred in response to IED attacks

with civilian casualties in comparison to attacks that did not harm civilians. For distances

8For the analysis of the whole country, we used data on ethnic settlement regions from Wucherpfennig
et al. (2011)
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Figure 7: Empirical results of the MWA analysis of civilian collaboration in Baghdad for
the 2008-2009 period. The underlying contour plot shows the estimated effect of insurgent
violence against civilians on civilian collaboration with the incumbent. Non-shaded areas
are significant at p<0.05, dotted lines indicate p<0.1, and full lines indicate p>0.1.

of up to 2.5 kilometers from the incident, a robustly significant effect can be found for a

range of temporal offsets from 8 to 14 days. Again, p-values are communicated as shaded

areas in the plot. Table 1 also communicates the effects, as well as the fraction of incidents

that have seen previous interventions numerically. Based on the almost exclusively posi-

tive estimates, we conclude that indiscriminate insurgent violence led to increased civilian

collaboration with US ground forces in the later phases of the war in Iraq. This effect is

present in the close spatial vicinity of the attack, but with a delay of one to two weeks.

While the effect is significant and robust, it is only moderately strong: For small spatial

distances (between 1.5 and 2.5 kilometers) and temporal distances between 1 to almost
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Time (days) Space (km) Treatment effect P-value SO MO

8 2.5 0.08 0.03 0.20 0.13
10 2.5 0.09 0.03 0.23 0.15
11 2.5 0.11 0.01 0.24 0.16
12 2.5 0.14 0.01 0.26 0.17
13 2.5 0.13 0.03 0.27 0.18
13 3.5 0.16 0.03 0.37 0.30

Table 1: Summary statistics for the interpretable areas of the contour plot in figure 7.
The estimated treatment effect for these statistically significant areas averages to 0.12.
The acronym SO (“same overlap”) refers to situations where either the cylinders of two
or more treatment events or two or more control events overlap. MO (“mixed overlap”)
refers to situations where treatment and control cylinders overlap.

2 weeks after the event, levels of civilian support of the treatment group are significantly

higher than in the control group. The estimated treatment effect peaks at 0.16 (for 13 days

and 3.5 km). Averaging over the interpreted effects, for every 100 IED attacks against

civilians one would expect up to 12 more instances of civilian assistance to US ground

forces. Of course, this insight only holds for the Baghdad area and the time period under

investigation.

This moderate effect size is empirically plausible. Not every IED attack with civilian

casualties would directly lead to an instance of collaboration. Civilians that are inclined

to assist US forces would also have to know where unexploded ordnance can be found to

actively assist US troops. Clearly, this condition is not met in all situations. It is more

plausible that only some incidents happen under circumstances that allow civilians to ac-

tively support US troops. Moreover, the results indicate that reactions to insurgent attacks

take place with a certain temporal delay that may result from the lack of opportunity to

collaborate with US forces but may also reflect risk aversion. In order to conceal their
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assistance to incumbent forces, civilians might let a few days go by before approaching US

troops.

Summary statistics for the matching procedure are presented in table 2. The upper

section of the table refers to the empirical sample before matching is applied. The lower

section refers to the matched sample. The summary statistics that express the similarity

of the joint distributions of the matching variables show a substantive improvement after

matching. Common support doubles from approximately 25% to approximately 50% and

the L1 distance metric changes in similar magnitude. In summary, the automated match-

ing procedure based on Coarsened Exact Matching proves very efficient in this case and

substantively improves the balance of the sample. In the area of the substantive effect,

the data include more instances of IED attacks that harmed civilians (∼140) than those

that did not lead to civilian casualties (118), but this slight difference in the number of

corresponding observations is accounted for by the weighted regression.9

In summary, we find that there was a significant increase in civilian collaboration with

US troops in Iraq during 2008-2009 as a result of insurgent IED attacks with civilian

casualties: Up to 12 more instances of civilian assistance for every 100 indiscriminate IED

attacks can be attributed to the presented mechanism. This effect is present in the close

spatial vicinity of the attack, but with a delay of about one week.

9A robustness check reported in the supplementary information without weighted regression leads to
almost identical results.
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Time (days) Space (km) Controlspre Treatmentspre L1pre %Supportpre
8 2.5 171 244 0.50 26.20
10 2.5 171 242 0.52 25.40
11 2.5 171 242 0.52 27.40
12 2.5 170 242 0.53 27.50
13 2.5 169 242 0.53 25.70
13 3.5 169 242 0.57 22.90

Time (days) Space (km) Controlspost Treatmentspost L1post %Supportpost
8 2.5 118 160 0.30 51.00
10 2.5 118 153 0.32 51.90
11 2.5 118 151 0.32 57.70
12 2.5 118 149 0.33 57.10
13 2.5 120 152 0.34 56.40
13 3.5 116 128 0.32 50.00

Table 2: Summary statistics for the matching procedure showing results for the inter-
pretable areas of figure 7. The upper half of the table refers to the original sample and the
lower half shows summary statistics for the matched sample.

6 Discussion and conclusion

In this paper, we have discussed the need for better methodology in the analysis of causal

relations in conflict event data. Existing approaches based on inferential methodology

only work reliably when data are available in natural spatial units of analysis. In many

scenarios, such data are absent, and relying on artificial units bears the risk of generating

false inference. Sliding window designs have been previously applied in these contexts.

While adequately accounting for the MAUP, corresponding studies are rather weak on the

inferential side: Usually, sliding window designs can only show that spatial and temporal

clustering in empirical data significantly deviates from the clustering that can be expected

under simulated baseline conditions.

Combining the best of both worlds, MWA applies a sliding window and an automated
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matching technique, offering an analysis of the causal connections between different types of

events for different spatial and temporal distances from a given intervention. The sliding

windows entail that pre-aggregated events cannot be easily analyzed, but the matching

procedure is generic enough to work with fixed spatial cells, such as administrative units

or settlement regions of ethnic groups. In numerical simulations, the method has revealed

artificially constructed causal relationships. We have also shown that substantive inference

can still be performed when small fractions of interventions overlap in space and time.

Higher levels of overlaps (that indicate SUTVA violations) can still be analyzed – albeit

less reliably – if numbers of previous treatment and control events are included in the

matching procedure.

Applying these lessons to an empirical example yielded novel insights into the ongoing

conflict in Iraq. Instead of being mere fence-sitters, civilians in Iraq actively supported

incumbent forces in reaction to indiscriminate insurgent violence. This result is a strong

reminder of the importance of civilian agency in asymmetric, population-centric conflicts

and the negative repercussions that can result from indiscriminate violence.

All results reported in this study were produced using custom R code designed to auto-

matically and efficiently perform all steps of MWA, including the sliding window analysis,

automated matching using CEM, and the graphical presentation of the results. A corre-

sponding “mwa” package for the R programming language will be released to the public

and made available at http://cran.r-project.org/web/packages/mwa/index.html.

A number of applications of this method for future research also spring to mind. The
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effectiveness of different kinds of peacekeeping interventions on subsequent levels of conflict

could be analyzed, for example. In criminological studies, different containment strategies

could be tested against one another with regard to subsequent crime rates. A prerequisite

for such analyses is detailed data on locations and timings of events and relevant geographic

information for the matching procedure. If such information is available, the presented

method can be used to generate relevant insights.
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