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Abstract

A method for predicting conflict zones in civil wars based on point process mod-
els is presented in this paper. Instead of testing the validity of specific theoretical con-
jectures about the determinants of violence in a causal framework, this paper builds
on classic literature and a wide body of recent studies to predict conflict zones based
on a series of geographic conditions. Using an innovative cross-validation design,
the study shows that the quantitative research program on the micro-foundations of
violence in civil conflict has crafted generalizable insights permitting out-of-sample
predictions of conflict zones. The study region is delimited to 10 countries in Sub-
Saharan Africa that experienced full-blown insurgencies in the post-Cold War era.

∗I would like to thank Rolf Turner for having saved the day twice when I got lost in the intricacies of
the spatstat package for the R programming language. Yuri Zhukov provided very helpful feedback as
a discussant for this paper at the Peace Science Society Workshop “Disaggregation in Terrorism Studies”,
Philadelphia PA, October 9, 2014.
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1 Introduction

In June 2014, the civil war in Iraq reached a turning point when the “Islamic State of

Iraq and the Levant” (ISIL) group captured seven major cities in the northern part of the

country.1 The Kurdish-dominated areas in Iraq and Syria have been traditionally calmer in

both war-torn countries and neither international organizations nor governments had seen

this escalation coming. This episode demonstrates that regions at risk in ongoing conflicts

are hard to identify even under the watchful eye of the international community. With

the recent uprisings of the Arab Spring, the ongoing violence in Iraq and Afghanistan,

and numerous conflicts in central Africa, ISIL’s advances will not be the last geographic

expansion of conflict with disastrous humanitarian consequences.

The question therefore springs to mind whether and to what extent the scholarly re-

search program on irregular conflicts can help us to predict major conflict zones in civil

wars in advance. Recent empirical research on the spatial determinants of violence in civil

conflict has generated substantial insights. Theoretically, the failure of states to control

their remote periphery has been repeatedly used as an explanation for political violence

(Herbst, 2000; Fearon and Laitin, 2003; Herbst, 2004; Scott, 2009; Buhaug et al., 2009).

Drawing on these insights, a series of studies has combined Geographic Information Sys-

tems and multivariate regression designs to test related hypotheses (Buhaug and Gates,

2002; Buhaug and Rød, 2006; Buhaug et al., 2009). Moreover, properties of irregular

conflicts have also been modeled in disaggregated computational studies drawing on geo-

graphic information (see Bhavnani et al., 2008; Weidmann and Salehyan, 2012; Bhavnani

et al., 2013).

Despite this progress in combining theoretical and quantitative insights, the exter-

nal validity and in particular the predictive capabilities of this research program remain

understudied. On the country level, quantitative predictions of political instability have

made substantial progress in recent years (see Goldstone et al., 2010; Ward et al., 2013).

Beyond their practical utility of informing relief organizations and policy decision, predic-

tions offer scientific benefits as they directly communicate the degree to which a studied

phenomenon is understood (Ward et al., 2010; Schrodt, 2014).

Yet another advantage of predictions is that they are not restricted to the empirical

sample: predicting locations of violent conflict beyond the sample that the model was fit-

1see http://www.stratfor.com/image/islamic-state-timeline, last retrieved on
Sep. 9, 2014.
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ted on reveals to what extent the data generating mechanism and relevant variables were

correctly identified. Based on these considerations, this paper tests to what extent geo-

graphic covariates of irregular warfare that have been identified in previous work improve

predictions of conflict zones. To evaluate these predictions, I rely both on a quantitative

and a qualitative metric. Spatial predictions of conflict intensities are compared to em-

pirically observed intensities to calculate error scores. Moreover, high intensity conflict

regions yielding more than 50 percent of the maximal conflict intensity are compared

visually to empirically observed hot spots.

The merit of this exercise is twofold: first, a direct comparison between the predic-

tions of models and random baselines serves as a reality check for the geographic research

program, clearly communicating to what extent informed predictions outperform random

guesses. Second, the applied methodology generates easily communicable predictions

that could be utilized beyond basic research to aid planning of humanitarian relief opera-

tions, for example.2

To demonstrate the predictive capabilities of the associated variables, point process

models are used to predict instances of lethal violence in ten recent insurgencies in Sub-

Saharan Africa. Predictions of these models are compared to the empirical record using

an innovative cross-validation design. The results indicate that central variables of the

geo-quantitative research program lead to drastically improved out-of-sample predictions

in comparison to uniform baselines.

2 Literature review

The connection between geography and war has long been considered important. Already

the classic literature of revolutionary warfare and counterinsurgency devoted attention to

the topic (see McColl, 1969; Guevara, 1961, 10; Mao [1938] 1967).

Contemporary research has stressed the primarily local determinants of fighting in

civil conflicts (Buhaug and Gates, 2002; Buhaug and Rød, 2006; O’Loughlin and Wit-

mer, 2010; Buhaug et al., 2011; Rustad et al., 2011). While interstate armies generally

move and fight under central command, irregular conflicts are frequently fought out be-

tween local militias and rebel supporters. Instead of strategic decisions of where to send

mechanized armies to fight, local encounters between irregular fighters and military units

2To this end, I have extrapolated likely conflict zones for Africa and the Greater Middle East as explained
in the supplementary information.

3



determine much of the violence in civil conflicts (Kalyvas, 2005).3

A series of publications has been devoted explicitly to coding and explaining the loca-

tion, size, and extent of primary conflict zones in armed conflict. Buhaug (2010) applies

a distance-decay model from the study of interstate war to internal conflicts and finds that

the relative military strength of the belligerents is a strong predictor for the location of

primary conflict zones. Drawing on a bargaining perspective, Butcher (2014) analyzes

the location of conflict zones and concludes that multilateral sub-national conflicts tend

to occur more in the periphery. Braithwaite (2010) analyzes under which conditions hot

spots of international armed conflict are likely to emerge. Hallberg (2012) contributes

a geo-referenced data set on primary conflict zones in civil wars since 1989. The re-

cent turn towards more disaggregated empirical studies has led to an increased interest in

data on single conflict events (Raleigh and Hegre, 2005; Sundberg et al., 2011) and geo-

referenced data on local determinants of conflict intensity. Consequently, geographic and

local socio-economic conditions have moved into the focus of empirical studies. Drawing

on spatially disaggregated data on wealth and data on conflict events, Hegre et al. (2009)

found that violence tends to cluster in more wealthy regions, possibly because rebels

prioritize them in their attacks. Raleigh and Hegre (2009) also found that population

concentrations generally see higher levels of fighting. While the statistical association is

strong, it remains unclear how this effect comes about. A relatively constant per-capita

rate of violence as well as strategic targeting of civilian concentrations spring to mind as

possible explanations.

While the emphasis on local determinants of conflict is justified both theoretically and

empirically, the diffusion of irregular civil conflict over time has also been studied. <AU-

THOR> investigated different diffusion scenarios for violence in civil wars, comparing

instances of empirical diffusion against random baseline scenarios. Zhukov (2012) used

road-network information in a refined empirical analysis and found that violence in the

north Caucasus tended to relocate over time along roads. Both studies point to the fact

that a substantive number of civil war events result from previous fighting in neighboring

regions rather than being solely caused by local conditions. Beyond spatial expansion,

reaction to specific instances of violence has also been analyzed (Lyall, 2009; Kocher

et al., 2011; Braithwaite and Johnson, 2012, <AUTHOR>). Again, reactive patterns in

3Especially the conflicts in Sub-Saharan Africa since 1990 have seen major involvements of irregular
forces. This also applies to the series of clashes referred to as “Africa’s World War” between 1998 and 2003
(see Prunier, 2009).

4



conflict event data underline that the conflict history as well as local socioeconomic and

geographic conditions jointly affect levels of violence in civil wars.

In summary, the presented literature on the determinants of violence in civil conflicts

suggests an interaction of multiple factors. Strategically, the military capabilities of the

actors as well as terrain conditions and infrastructure play an important role for the loca-

tions of major battle zones. On a tactical level, violence tends to cluster as actors fight

repeatedly over specific locations, but it also diffuses into previously unaffected regions.

Finally, the types of violence applied by actors in the field crucially affects subsequent

levels of violence. While these insights are important for testing and building theories of

the dynamics of violence in irregular conflict, the question of whether or not they translate

into generalizable and ultimately actionable knowledge remains unanswered. Regression

studies and matching designs are generally used to test whether or not specific variables

have a causal effect in line with theoretical considerations. The estimated effects, how-

ever, relate solely to hypothetical all-else-being-equal, or “cetris paribus” scenarios.

Despite the obvious merit of inferential designs, the added scientific and practical

value of predictions has been pointed out in recent publications (Ward et al., 2010; Gold-

stone et al., 2010; Gleditsch and Ward, 2012; Schrodt, 2014). Tangible predictions about

the location and timing of violence are a concern of policy makers and relief organi-

zations. Consequently, political scientists have embarked on generating predictions for

which countries are likely to experience civil wars (Weidmann and Ward, 2010; Gold-

stone et al., 2010; Ward et al., 2010, 2013) and which regions are most prone to violence

in Afghanistan (Zammit-Mangion et al., 2012; Yonamine, 2013). Advancing this line of

research, this paper is a first attempt to predict major conflict zones across civil conflicts.

The performance of these predictions is assessed in comparison to random baselines. In

essence, this paper communicates how much predictive power the quantitative research

program on the micro-dynamics of civil wars has gained in comparison to agnostic guess-

ing about where violence will occur. This exercise serves as an important reality-check for

our ability to predict sub-national conflict intensity based on central variables identified

in the literature.

Of course, assessing the predictive performance of these variables requires a suitable

empirical setup. The paper proceeds as follows: in the next section, I will discuss the

case selection for this study. After that, I will identify central variables for the prediction

of variation in conflict intensity from the above-referenced literature. A generic setup

for predicting violence based on these variables is presented in the subsequent section,
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loosely based on Zammit-Mangion et al. (2012). Finally, I will test whether and to what

extent these variables produce improved out-of-sample predictions in comparison to ag-

nostic baselines.

3 Scope and case selection

Because the literature on revolutionary warfare and counterinsurgency studies have been

most vocal in proposing a direct link between rebel presence and terrain conditions, I de-

cided to narrow down the empirical analysis to insurgencies, i.e. conflicts in which the

rebels are not recognized as belligerents and heavily rely on civilian assistance to wage

a guerrilla war against the state (Galula, 1964; CIA, 2009, 2). However, not all civil or

irregular conflicts are insurgencies. Kalyvas and Balcells (2010) report a declining trend

for this type of conflict and an increase in wars that blend elements of conventional fight-

ing with irregular rebellions. Moreover, fighting in quasi-conventional civil wars, such

as in Yugoslavia in the early 1990s, might be better predicted by ethnic boundaries than

terrain conditions. Despite the overall decline in the frequency of insurgencies, they still

constitute the most frequent type of armed conflict in the post-World War II period. Con-

flict events from the “Geo-referenced Event Dataset” (GED) (Sundberg et al., 2011) cover

lethal clashes that occurred between 1990 and 2010 from 42 African countries. Drawing

on a separate dataset by Lyall and Wilson (2009), I identified 11 cases of insurgency that

are covered in GED.4 I decided to exclude Djibouti (1991-2001) because the country is

too small for meaningful geographic analysis given the resolution of the covariates. Table

1 shows the remaining cases that were used for the analysis.

4 Spatial determinants of fighting

The localized nature of fighting in civil conflicts provides a suitable starting point for

predictive modeling. Recent studies have utilized digital information on geographic con-

ditions and conflict events to reveal a series of robust statistical relationships. I will there-

fore introduce conflict event datasets and data on the spatial determinants of violence that

have been identified by previous studies to systematically test to what extent predictions

of conflict intensity can be improved by each variable.

4In the GED dataset, I focused on violence by or against the state and observations that fell into periods
and countries experiencing active insurgencies according to Lyall and Wilson (2009).
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No. GW number Country War start War end
1 615 Algeria 1992-01-01 2002-12-31
2 490 Congo, DRC 1994-01-15 1998-12-28
3 516 Burundi 1994-04-20 2005-12-24
4 484 Republic of Congo 1997-06-05 1999-12-06
5 483 Chad 1994-01-23 1998-03-09
6 517 Rwanda 1994-02-13 1998-11-27
7 404 Guinea-Bissau 1998-06-06 1999-05-06
8 450 Liberia 2000-05-01 2003-11-21
9 437 Ivory Coast 2002-09-19 2004-11-06
10 451 Sierra Leone 1991-03-23 1999-12-19

Table 1: Overview of the cases used for the statistical analysis. Start- and end-dates corre-
spond to the first and last observations in the GED dataset for the corrsponding conflicts.

Geographic data on armed conflict

In the past decade, several data collection efforts have been started to disaggregate civil

conflicts into a series of events. These events range from skirmishes to major battles

or atrocities against civilians. Both the “Armed Conflict Location and Event Dataset”

(ACLED) (see Raleigh and Hegre, 2005) as well as the “Georeferenced Event Dataset”

(GED) (see Sundberg et al., 2011) rely on news reports that contain information on violent

events primarily in Sub-Saharan Africa. GED is based on an elaborate coding procedure

that ensures reliability by cross-validating records with multiple coders (Sundberg et al.,

2011). Definitions of what constitutes a conflict event vary slightly between the data

sets: In ACLED, violence against civilians as well as battle outcomes such as changes in

territorial control are recorded. Sporadically, ACLED also has information on initiators

of violence, but information on casualties is not recorded. GED is restricted to lethal

encounters between political actors and provides estimates for civilian and military casu-

alties. Information on both outcomes of battles and initiators are missing. For this study,

I used the GED dataset on lethal events in African civil conflicts between 1990 and 2010.

The advantage of GED for this particular project is that lethal encounters are particularly

relevant and conceptually clear. In the next sections, I will introduce covariates to predict

spatial variation in lethal violence in insurgencies.

Population

Based on the notion of “population-centric warfare” (see CIA, 2009, 2), civilian popu-

lation concentrations have been identified as a predictor of conflict events (Raleigh and

Hegre, 2009). Insurgents seek contact with the civilian population for various reasons: to
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hide from incumbent forces (Salehyan and Gleditsch, 2006), to recruit additional combat-

ants (Sheehan, 1988, 50), and to extend their geographic control over relevant parts of the

country (Kalyvas, 2006, 202-207). Spatially disaggregated population counts from the

Gridded Population of the World dataset (GPW) (CIESIN, 2005) were therefore included

in the predictive models.

Distances to capital and border

The ultimate goal of irregular uprisings is to conquer the capital city, as was the case

in Saigon in 1975, in Kabul in 1996, and in Monrovia in 2003. Defending the center

is therefore a strategic imperative for the state. Repeated attempts to attack the govern-

ment and incumbent counteractions make distance to the capital city a spatial predictor of

higher levels of violence (see Buhaug et al., 2009; Buhaug, 2010; Toellefsen et al., 2012).

Along the same lines, distance to the nearest international border that provides refuge to

the rebels has been associated with levels of violence (Salehyan, 2009; Buhaug, 2010).

Cases in point are the Vietcong that moved their vital supply lines partially to Laos and

Cambodia and the Afghan Mujaheddin that traditionally fight superpowers from bases in

the border-regions in Pakistan. Distances to capital cities and international boundaries

were calculated based on Weidmann et al. (2010).

Accessibility

Remote and difficult terrain provides insurgents with the opportunity to prepare attacks

and temporarily evade the fighting (Fearon and Laitin, 2003). In order to counterbalance

the material superiority of the state, rebels utilize less accessible areas to prepare military

operations and recruit from the local population (McColl, 1969). Terrain and soil con-

ditions, road and railroad networks, bodies of water, and forested regions all affect the

accessibility of sub-national regions. A comprehensive aggregation of these factors has

been performed by Nelson (2008). Their provision of a global friction map for travel-

ing times between all cities with more than 50,000 inhabitants in the year 2000 offers a

suitable operationalization for infrastructural accessibility.

Wealth

Spatial variation in wealth has been associated with conflict events (Hegre et al., 2009).

Two principal scenarios are imaginable for this variable to affect levels of violence. First,
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materially deprived regions could see stronger support for insurgent activities. Second,

rebels might strategically target wealthier regions for private gains and/or to finance the

uprising. Lootable resources in particular have been linked to intense standoffs in civil

conflicts (Gilmore et al., 2005). Spatially disaggregated data on wealth (Nordhaus et al.,

2006) codes disaggregated GDP data on a global scale. The derived unit is Gross Cell

Product (GCP): an estimate for the market value of all goods and services in a geographic

region. Cells with a maximal size of 60 nautical square miles (about 111 square kilome-

ters) are coded in this dataset, which was also included. While the exact causal roles of

these geographic factors remain disputed, general correlations between the corresponding

variables and levels of violence are widely accepted.

Natural land cover

Densely forested regions can be as inaccessible as high mountain ranges. Consequently,

they severely limit situation awareness and mobility for regular forces (see Crawford,

1958). In Columbia, the FARC rebels have evaded defeat for almost four decades, Ugan-

dan LRA rebels are still at large despite regional and international attempts to stop their

activities, and Vietnamese rebels waged three successful campaigns against three differ-

ent global powers between 1941 and 1975. In all of these cases, dense forestation has

been cited as an important enabler of guerrilla actions. I therefore included a dataset that

codes the percentage of green vegetation for the year 2001 on a global scale and with a

spatial resolution of 1km² (Broxton et al., 2014).

While the exact causal roles of these geographic factors remain disputed, general cor-

relations between the corresponding variables and levels of violence are widely accepted.

But to what extent are these factors capable of predicting the spatial variation of the in-

tensity of violence in civil wars? As mentioned above, this paper seeks to provide an

easily communicable answer to this question. The next section details the corresponding

approaches to modeling and validation.

5 Modeling approach

Several possible modeling approaches spring to mind for predicting conflict events based

on the presented data. Many contemporary studies of violence in civil wars draw on

econometric analyses. While the breadth of econometric methodology and the rapid rate

at which it advances cannot be overlooked, the analysis of inherently spatial data intro-
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duces problems. First and most importantly, the nature of the dependent variable – conflict

events distributed in space – has no obvious equivalent in the econometrician’s toolbox.

Researchers therefore usually aggregate event counts within spatial units such as artificial

grid cells and then apply count-dependent variable models (see, for example Fjelde and

Hultman, 2013; Pierskalla and Hollenbach, 2013; Basedau and Pierskalla, 2014). Un-

fortunately, in most cases there is no empirically or theoretically informed strategy for

choosing the sizes of such cells.

Of course, statistical predictions both in- and out-of-sample also hinge (to some ex-

tent) on design decisions in the spatial aggregations. This presents a serious problem for

the ambition of this paper: If the claim was made that out-of-sample predictions of con-

flict intensity were possible based on a grid-cell approach, this finding would partly be

due to a ad hoc choice of a specific cell size. Ideally, a non-parametric technique would

be used for mapping conflict events to covariate information.

To address this issue, an alternative modeling approach more frequently chosen in

biology and epidemiology relies on point process models (PPM). While PPMs have been

applied to conflict research before (Zammit-Mangion et al., 2012), the relative novelty of

this approach requires a more in-depth discussion of their properties. The next section

gives an overview of PPMs and their application to multivariate inference, as well as the

chosen setup for prediction, cross-validation, and extrapolation.

5.1 Point process models

Before discussing this type of model in further detail, some terminology needs to be in-

troduced. Spatial point patterns are generally analyzed within clearly demarcated areas.

These areas are referred to as “windows” and can be either artificial geometric structures

or irregularly shaped polygons. In this study, the country polygons obtained from Wei-

dmann et al. (2010) are used as observational windows with one model being fitted per

country.

Statistical models of spatial point patterns have been developed for several decades

and successfully applied to various fields, such as biology, geography, and criminology.

One obvious quantity of interest in spatial point patterns is their intensity, defined as the

expected number of points per area in a given spatial window.

The intensity of the point process can vary continuously within the window as a func-

tion of covariates or another point pattern. While the introduction of a temporal dimension
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provides additional challenges, PPMs are attractive alternatives to econometric models for

cross-sectional analyses of conflict events. Their main advantage is that they offer em-

pirically driven and non-parametric solutions for selecting the area around the points for

aggregating covariate information. In the next section, I will introduce some implemen-

tational details of PPMs starting with underlying assumptions. After that, I will provide a

closer look at fitting these models to data.

Underlying assumptions for spatial Poisson processes

Any quantitative model must strike a balance between mathematical tractability and the-

oretical adequacy. Very much in favor of the first requirement for this application is the

spatial Poisson process, which can serve as a suitable starting point for predictive mod-

eling. For the spatial variant of the Poisson process, two principal sub-types must be

distinguished: homogeneous and inhomogeneous processes. In the case of the homo-

geneous spatial Poisson process, the intensity (i.e. the number of points per area) λ is

uniform for the entire observational window. Of course, modeling high- or low-intensity

areas within countries requires the intensity to vary as a function of covariates.

The introduction of sub-regions within the spatial window is a way to achieve this. A

heuristic method for choosing subregions for a given empirical point pattern will be dis-

cussed in the next section. For each of the subregions, covariate values can be established

and used to estimate marginal effects. Points per subregion are Poisson-distributed with

probability mass function for natural positive numbers X and k:

Pr(X = k) =
λ k

k!
e−λ (1)

Across regions, however, the intensity of the Poisson processes may vary and the num-

bers of points per subregion are independent (see Baddeley, 2008, 72ff.). Applying this

formalism to the study of civil conflict does justice to the strand of literature that points

to the local determinants of violence. However, it omits the well-described escalatory

dynamics of violence and spatial diffusion.5 Poisson process models nevertheless serve

as a point of departure for predictive purposes and do not require ad hoc design decisions

about the spatial scale of point-to-point interactions.

5Please refer to the supplementary information for a discussion of modeling self-exciting Point processes
and corresponding computational problems.
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Choosing tiles for covariate information

Modeling point intensity as a function of geographic covariates requires that the points in

the empirical sample are associated with the covariate information. As mentioned before,

PPMs do not rely on predefined spatial units to achieve this and instead choose suitable

tiles heuristically from the point pattern. As illustrated in figure 1, this is accomplished in

two steps: first a number of “dummy” points are superimposed on the empirical point pat-

tern. They are either arranged in a grid-like structure (as shown in figure 1 on the right),

or are uniformly distributed at random. In a second step, the study window is divided into

tiles which are either associated with dummy points or empirical ones. The tiling algo-

rithm is usually chosen to optimally demarcate regions that are closest to the empirical

or simulated points, for example by calculating Dirichlet tiles (i.e. Voronoi diagrams; see

Mitchell, 1997, 233). For each of the resulting tiles, covariate information is then aggre-

gated. Of course, the exact tiles resulting from the tessellation are still dependent to some

extent on the number of dummy points in the sample and their spatial distribution. How-

ever, the great advantage of this approach is that covariate values that are subsequently

used for model fitting are obtained from areas that are closer to the empirical points than

the simulated dummies. This is arguably a better approach to mapping covariate infor-

mation to empirical points than an arbitrary spatial grid with empirically uninformed cell

size and origin.

Figure 1: Illustration of a quadrature scheme based on Dirichlet tessellation (figure taken
from Baddeley and Turner, 2000).
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Fitting models to data

For the estimation of β -parameters, the applied tessellation techniques usually gener-

ate tiles intersecting with points in the sample and a comparable number of tiles for ar-

eas without points. A widely used approach for fitting point patterns to data relies on

the Berman-Turner algorithm (see algorithm 1) which implements a maximum pseudo-

likelihood approach to parameter estimation: instead of choosing parameters based on

their likelihood, Berman and Turner (1992) suggest choosing them according to their

conditional intensity – that is, the observed number of points per area in the tiles given

the estimated intensity. Berman and Turner (1992) observe that the conditional intensity

of the inhomogeneous spatial Poisson process has the same functional form as likelihood

functions employed in Generalized Linear Models (GLM). This allows for a wide range

of PPMs to be fitted in readily available GLM software. In detail, Berman and Turner

(1992) suggest the following setup:

Algorithm 1 Berman-Turner Algorithm for Poisson process models.
1. In addition to the empirical points in the sample, generate a number of dummy

points. Together with the empirical points, these are referred to as “quadrature
points”. Based on a tessellation scheme (Drichilet tessalation), the observational
window is split up into areas associated with one quadrature point each.

2. For each quadrature area u of the spatial window W , weights are computed accord-
ing to weight j =

area(u j)
area(W ) for each u jεW .

3. For each quadrature area u, binary indicators are computed according to

(a) z j = 1 for empirical points

(b) z j = 0 for dummy points.

4. For each quadrature area u, a response variable is computed according to y j =
z j/weight j.

5. Values for the spatial covariates are obtained for each quadrature point through an
intersection of the points with the underlying data v j = S(u j,x).

6. Finally, the response variable can be estimated as ŷ being a function of covariates v
with weights weight in a log-linear Poisson regression.

Being able to fit models to data is a central prerequisite for assessing the predictive

gain associated with individual variables. In the next section, I will introduce the remain-

ing requirements: a general error score to compare prediction and empirical data and a

cross-validation setup for out-of-sample tests.
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5.2 Error score

To keep the validation approach as general as possible, I decided to simulate point pat-

terns from the fitted prediction models and then compare them to the empirical patterns.6

Of course, simulated point patterns vary from simulation run to simulation run as they

are generated probabilistically. To establish average predictions, I simulated point pat-

terns from the fitted models 100 times for each in-sample and out-of-sample test. A suit-

able method that yields a continuous non-parametric estimate for the point process was

described by Diggle (1985).7 I decided to compare simulated and empirical intensities

numerically to assess the performance of different models.

While this setup might look rather cumbersome at fist glance, it essentially generates

a side-by-side comparison between empirically estimated and simulated intensities. This

direct comparison communicates the performance of the models in a straight-forward

manner and easily generalizes to other models such as more advanced PPMs, agent-based

models, or grid-cell based econometric models. Figure 2 depicts empirical and simulated

conflict events, as well as corresponding intensity surfaces.

6The Metropolis-Hastings Algorithm otherwise familiar from Bayesian statistics is generally used to
simulate point patterns from spatial probability distributions (see Baddeley, 2008).

7Diggle (1985) states that this method assumes that data generating mechanism to be a Cox Process
(such as the spatial inhomogeneous Poisson Process) and requires a type of kernel to be specified. I used
Gaussian kernels with empirically estimated bandwidth parameters in absence of any theoretical reasons to
deviate from this setup.
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Figure 2: Example of empirical and simulated events from the Second Liberian Civil War
(1999-2003). On the top left, the empirical events from the GED dataset can be seen for
this conflict. On the top right, a corresponding Gaussian intensity estimation is visible. In
the bottom row, simulated events and the corresponding surface are depicted.

The prediction error is computed based on the absolute differences in the densities for

empirical and simulated events. Density surfaces are represented as fine-grained arrays.

The mean absolute error for an array with J cells is calculated as follows:

MAE =
∑

J
1 abs(emp j − sim j)

J
(2)

Figure 3 illustrates the comparison and the calculation of average prediction errors visu-

ally.
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Figure 3: Depiction of the error metric used for the prediction models. The two lines
are the cross sections of the point intensity estimates for empirical and simulated point
patterns. The differences in densities (gray areas) are approximated numerically.

In this setup, the total number of events is still given by the empirical sample, i.e.

the specific county the model was fitted on. Of course, predicting the overall number of

conflict events (i.e. the severity of the civil war) is not in the focus of this study. Numerous

socioeconomic, political, and military factors influence the severity of conflicts and it

would be impossible to do justice to them in this article. I therefore decided to normalize

the predicted intensities to one. As a result, the predictions reflect relative intensities

scaled from zero to one.

5.3 Cross validation

In order to assess the predictive capabilities of the fitted models out-of-sample, a suitable

cross-validation setup had to be defined as well. Basically, cross validation works by

dividing the available empirical sample into a training and a test set. Models are fitted on

the training set and then used to generate predictions for the test set. Those predictions

are then validated against the empirically observed results from the test set. This setup

serves as a more realistic test framework than simply assessing the in-sample predictions

of statistical models – that is, their ability to replicate the test data they were trained on.8

In this case, I chose to apply a leave-one-out cross-validation scheme.9 Models were

fitted on all but one of the countries in the statistical sample. A prediction model was

8A typical problem that can arise in in-sample predictions is overfitting: instead of generalizing from the
underlying data-generating process, an overfitted model tends to replicate the noise of the specific sample
it was fitted on. Overfitting leads to low in-sample prediction errors combined with high out-of-sample
prediction errors.

9One alternative setup frequently chosen in comparable projects is k-fold cross-validation. In this case,
the small number of ten available cases allowed for using each single data point for a separate cross-
validation run, thus providing the best possible approximation of the out-of-sample prediction error.
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generated by averaging the β−coefficients of these models. The resulting model was

subsequently used to predict the point pattern in the remaining country. This setup mimics

the real-world challenge of predicting the spatial distribution of violence in future civil

wars based on a set of historical conflicts. In the next section, I will present results for

predictions of conflict intensity for all ten African cases.

6 Results

In order to assess the predictive capabilities of the models, I computed density differ-

ences both in-sample and out-of-sample. For the in-sample assessment, I fitted a series

of Poisson models based on the introduced covariates and fitting techniques using the

spatstat package for the R programming language. I simulated 100 distinct point pat-

terns from the fitted models and calculated intensity surfaces. One expected density for

each model was established by averaging over these simulations. Table 2 shows cumu-

lative differences between the empirical density and the average simulated density. To

generate a baseline against which the models could be compared, I generated 100 random

point pattern consisting of an equal number of points as the empirical sample. The aver-

age difference in normalized intensities between random and empirical patterns serve as

a baseline against which the predictions can be compared.

6.1 In-sample prediction error

In total, six model predictions plus the random baseline were simulated for each country.

As a first test of the introduced setup and the predictive capabilities of the models, the

introduced variables were added subsequently to the model specification. Acronyms in

the top row of the prediction tables indicate the variables that were used: “p” stands for

population, “c” for capital distance, “a” for accessibility, “w” for wealth, “b” for border

distance, and “v” for vegetation. Results from a full-fledged model-averaging setup where

each covariate’s predictive performance is tested against a series of different model spec-

ifications are presented in the supplementary information. Table 2 shows cross-validation

scores for the different model specifications and the random baseline. As discussed above,

these scores are the average cumulative absolute difference between the empirical and the

simulated point patterns. The last row in the table shows normalized cross-validation

scores across countries with the random baseline having a value of 1. This row shows that
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the initial models that only use population as a predictor already yield half the cumulative

error scores (.45) of the random baseline. As additional predictors are introduced, the

scores drop to .26-.23. This setup also shows that not every predictor yields the same im-

provements. Model 2, using data on population centers and capital distances, clearly out-

performs model 1, but subsequent additions of predictors only yield marginal returns.10

Model 3 with an error score of .23 performs best in this setup. These results are encourag-

ing as they demonstrate that the introduced data and modeling techniques can be used to

replicate empirical patterns to some extent. However, the real test for the presented setup

are predictions beyond the sample that the models were fitted on. Corresponding results

can be found in table 3.

Country p(1) pc(2) pca(3) pcaw(4) pcawb(5) pcawbv(6) random
1 Cote d’Ivoire 0.30 0.26 0.22 0.24 0.26 0.25 0.39
2 Liberia 0.24 0.14 0.06 0.06 0.07 0.05 0.30
3 Guinea-Bissau 0.04 0.04 0.04 0.05 0.05 0.05 0.33
4 Sierra Leone 0.12 0.12 0.13 0.14 0.11 0.12 0.39
5 Algeria 0.12 0.01 0.01 0.01 0.01 0.01 0.50
6 Burundi 0.12 0.10 0.10 0.09 0.07 0.07 0.39
7 Rwanda 0.11 0.11 0.12 0.13 0.16 0.17 0.38
8 Congo 0.30 0.05 0.04 0.04 0.06 0.06 0.35
9 Congo, DRC 0.29 0.10 0.09 0.09 0.07 0.06 0.38
10 Chad 0.05 0.06 0.05 0.04 0.05 0.05 0.38
11 Sum 1.69 0.99 0.86 0.89 0.91 0.89 3.78
12 Normalized 0.45 0.26 0.23 0.24 0.24 0.24 1.00

Table 2: In-sample results based on differences between normalized empirical and simu-
lated intensities.

6.2 Out-of-Sample Prediction

Table 3 shows cross-validation scores based on the leave-one-out cross-validation setup

described in section 5.3. As one would expect, the cumulative error score across models

is higher than in the in-sample setup (3.93 compared to 3.78). However, the out-of-sample

predictions generally perform surprisingly well: For all but the simple population model,

error scores below .3 of the normalized random baseline errors are attained. Interestingly,

the lowest error scores are achieved for models 3 and 4 which only include 3-4 predictors

each. The slightly lower performance of models 5 and 6 might be due to overfitting. Gen-

erally, the out-of-sample predictions work well and serve as a powerful reminder of the

achievements of geographic and quantitative research on civil conflicts of the last decade.

While measuring deviations between empirical and predicted densities is a good way to

10Please refer to the supplementary information for the β -estimates and results from a full model-
averaging setup that shows each variable’s contribution in a series of model specifications.
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quantify the performance of prediction models, qualitative comparisons as introduced in

the next section add another important angle to the empirical analysis.

Country p(1) pc(2) pca(3) pcaw(4) pcawb(5) pcawbv(6) random
1 Cote d’Ivoire 0.19 0.19 0.19 0.19 0.19 0.19 0.45
2 Liberia 0.10 0.08 0.06 0.06 0.06 0.06 0.27
3 Guinea-Bissau 0.04 0.05 0.04 0.04 0.04 0.04 0.35
4 Sierra Leone 0.21 0.21 0.20 0.20 0.19 0.18 0.38
5 Algeria 0.02 0.02 0.02 0.02 0.02 0.02 0.51
6 Burundi 0.07 0.07 0.07 0.09 0.09 0.11 0.39
7 Rwanda 0.10 0.10 0.10 0.11 0.15 0.17 0.39
8 Congo 0.09 0.09 0.09 0.09 0.10 0.10 0.35
9 Congo, DRC 0.11 0.11 0.11 0.11 0.11 0.11 0.40
10 Chad 0.41 0.16 0.07 0.07 0.08 0.08 0.44
11 Sum 1.35 1.08 0.96 0.99 1.03 1.07 3.93
12 Normalized 0.34 0.28 0.24 0.25 0.26 0.27 1.00

Table 3: Cross-validation results for predictions that were fitted on nine of the ten coun-
tries and then used to predict the remaining country.

6.3 Qualitative comparisons

Section 8 shows comparisons between empirical densities and predictions. For each of

the ten countries in the sample, three plots were generated. The plot on the left show

normalized intensity surfaces for the empirical patterns. The columns in the middle and

on the right show model predictions based on model 3 which had the lowest error scores in

the in-sample and out-of-sample predictions. In the middle column, model 3 was fitted on

the country under investigation. In the right column, the cross validation model based on

the estimates of the remaining cases was used to predict the country under investigation.

The associated legend can be found below the country plots. As seen in section 8 on

page 22, most of the out-of-sample predictions actually predict high-conflict areas. This

is remarkable, as it both underscores the merit of the used datasets as well as the validity

of the chosen modeling approach. These specific predictions also illustrate the merit of

the technology for informing relief organizations and policy.

But how can we explain the fact that some conflicts are predicted quite well while

others are not? A closer look at the (qualitatively) most obvious mispredictions –Ivory

Coast and Republic of the Congo– can provide some answers. In the Ivorian case, the

framework of a peripheral insurgency slowly advancing towards the center simply does

not apply very well. Instead, ethnic and religious tensions between an predominantly

Christian South and a predominantly Muslim North account for a large fraction of the

conflict events (see McGovern, 2011). This entailed that the region of high-intensity

19



fighting occurred along an East-West axis, while the model predictions place it in the

northern periphery (see predictions in section 8).

In the case of the Republic of Congo, much of the fighting happened during the height

of the civil war in and around the capital city, Brazzaville. Fearing the outcome of a

July 1997 Presidential election, followers of the top candidates Pascal Lissouba and Col.

Denis Sassou Nguesso engaged in an armed struggle over control of the capital (see DeR-

ouen and Heo, 2007, 129). While the uprising against then-ruling President Lissouba

qualifies as a popular insurgency given the participation of numerous irregular fighters,

Mao’s ([1938] 1967) three-stage model for peripheral insurgencies fails to apply. Instead

of building on a protracted and peripheral campaign, the warring parties opted for a con-

flict option that could be better described as a popular coup d’état. Instead of affecting

remote areas, the fallout in political violence of this conflict clustered around the capital

city in the far south of the country.

7 Discussion and Conclusion

Studies of armed conflict have identified a number of geographic conditions that cor-

relate with guerrilla activity. Both protection from state power in terms of remoteness

and the presence of strategic targets such as population centers affect the probability of

armed clashes taking place in insurgencies. Causal effects of selected spatial covari-

ates have been analyzed by a flurry of recent publications. However, established effects

were only valid for specific spatial units, and only hold under cetris paribus conditions.

An assessment of the external validity of this research program has been missing so far.

Filling this gap, this paper has used geographic data on conflict as well as a series of

theoretically prominent geographic covariates to predict the spatial distribution of con-

flict, both in-sample and out-of-sample. The results clearly communicate to what extent

these variables actually improve predictions in direct comparison to an agnostic baseline:

In-sample, cumulative error scores only amount to 25% of the cumulative error of the

random baseline. In out-of-sample predictions, the error scores are slightly higher, but

they still only amount to less than 30% of the random baseline error. In qualitative com-

parisons, the locations of high-intensity conflict zones are correctly predicted in 6 out of

10 countries. Two countries (Sierra Leone and the Democratic Republic of the Congo)

have two distinct high intensity conflict areas, and only one of them is predicted correctly.

In the two remaining countries (Ivory Coast and Republic of Congo) the predictions are
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incorrect. While more work needs to be done to identify and test predictors of violence

and include more advanced modeling techniques, these results underscore the external

validity of the insights generated by geo-quantitative research on civil conflicts and their

potential merit for real-world applications.
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8 Side-by-side comparisons of empirical densities and pre-

dictions

Empirical In-sample Out-of-sample

Algeria

Burundi

Chad

Congo

DR Congo
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Ivory Coast

Guinea-Bissau

Liberia

Rwanda

Sierra Leone

Legend
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